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OB-WSPES: A Uniform Evaluation System for
Obfuscation-based Web Search Privacy
Chengkun Wei, Qinchen Gu, Shouling Ji, Wenzhi Chen, Zonghui Wang, Raheem Beyah

Abstract—Web search queries reveal extensive sensitive information about users’ interests and preferences to the search engines and
eavesdroppers. Obfuscation-based private web search solutions automatically generate dummy queries and send the obfuscated queries to
the search engine to hide users’ search intentions. Despite many obfuscation methods and tools have been developed, there is no practical
system for evaluating their utility performance and the vulnerability against modern privacy attacks. In this paper, we propose and develop
OB-WSPES, a uniform evaluation system for obfuscation-based web search privacy, which allows researchers to conduct fair analysis and
evaluation of existing or newly developed web search privacy protection/attack techniques. Leveraging OB-WSPES, we model the obfuscation
activities and systematically implement and evaluate five obfuscation schemes and ten modern web search attacks on the public AOL dataset.
Our results demonstrate that, counter-intuitively, adding more fake queries to a user’s real data does not necessarily yield better privacy. The
query utility of obfuscated queries declines with the increasing amount of dummy queries, while the application utility does not. We discuss the
experimental results and point out the four important factors that affect the web search privacy and utility. Further, we propose possible
directions for future research.
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1 Introduction

Web search has become one of the most effective ways to
get information. However, search activities can also give extensive
insights into users’ interests and intentions. For example, query
logs can be used by the search engines or eavesdroppers to
generate users’ portraits and infer users’ sensitive information.

To this end, many approaches have been developed to protect
users’ privacy in web search. Generally, we can classify them
into three categories: cryptography-based solutions, proxy-based
solutions and obfuscation-based solutions.

In cryptography-based solutions [42], [43], [44], [45], also
known as system-centric solutions, Private Information Retrieval
(PIR) techniques are used to retrieve information from the search
engines without revealing queries and search activities. These so-
lutions provide strong privacy guarantees. However, one drawback
is that their computational cost may be unaffordable for a large
search engine. Another drawback is that they require the search
engines to cooperate with PIR protocols. Thus it may not be
realistic to implement these solutions. In proxy-based solutions
[53], [54], [55], [56], also known as network-centric solutions,
users connect to the search engine through an anonymous com-
munication system to hide their identities. This technique can
prevent an adversary from constructing users’ profile to some
extent, but various tracking techniques (e.g., cookies, device/web
fingerprinting and browser plugins) can be utilized to link a user
with his/hers queries. In obfuscation-based solutions [1], [2], [5],
[6], [8], [9], [11], [60], [61], also known as user-centric solutions,
a user can conceal real queries by generating and issuing dummy
queries. Nevertheless, adversaries may employ prior knowledge
about obfuscation schemes and logs of users’ search activities to
filter out fake queries from a set of observed data. Note that these
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solutions are complementary, and it is possible to combine these
solutions for designing a hybrid web search privacy protection
mechanism. Specifically, a series of interesting studies integrate
proxy-based and obfuscation-based methods and combine unlink-
ability and indistinguishably of the private web search mechanisms
[57], [58], [59].

In this paper, we focus on obfuscation-based solutions. Sur-
prisingly, although there have already been many obfuscation tech-
niques [1], [3], [23], [32] and powerful web search privacy attacks
[22], [27], [31], there are no practical systems to evaluate ob-
fuscation mechanisms’ performance and their resistance against
modern privacy attacks. To address this challenge, we propose and
implement OB-WSPES, an obfuscation-based web search privacy
evaluation system that enables users to obfuscate their data with
different obfuscation techniques, measure utilities of obfuscated
queries and comprehensively evaluate the obfuscation resilience
against web search privacy attacks.

We construct a generic model which characterizes the
obfuscation-based web privacy search activities as six-tuples.
Based on this, we could consider the obfuscation mechanism
as a black box and model any obfuscation scheme’s activities.
Subsequently, we use various feature extraction methods to extract
features from those search activities. We also assume that adver-
saries might have prior knowledge about the obfuscation mecha-
nisms and have access to the log history of users’ queries. Then,
we leverage different attack methods against diverse obfuscation
mechanisms under various settings. In the evaluation module, we
evaluate the utility of obfuscated data from two aspects, query
utility and application utility. In addition, we measure the resis-
tance/vulnerability of obfuscation methods against attacks based
on the attack reports.

However, through the analysis and evaluation of modern ob-
fuscation schemes against privacy attacks, we find that in the event
of a powerful attack, no obfuscation mechanisms could achieve
the desired effect and adding more fake queries to users’ real data
does not necessarily yield better privacy. Furthermore, four major
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factors affect the utility and privacy of the obfuscated queries (the
obfuscation algorithm, the content and the size of thesaurus, the
manner of interleaving obfuscated queries, and the ratio of dummy
queries to real queries).

Contributions. The main contributions of this paper are as
follows.

(a) We develop and implement an obfuscation-based evalu-
ation system for web search privacy (OB-WSPES). To the best
of our knowledge, OB-WSPES is the first such practical system
publicly available to both academia and industry. More impor-
tantly, OB-WSPES provides the first uniform platform that enables
researchers to conduct accurate comparative studies of obfuscation
and web search privacy attack techniques, and to comprehensively
understand the effectiveness of existing or newly developed web
search obfuscation/attack techniques.

(b) In OB-WSPES, we model the obfuscation activities and
systematically analyze, implement, and evaluate five query obfus-
cation schemes. We conduct experiments with eight utility metrics
on the AOL dataset. The results demonstrate that the query utility
declines with the increase of inserted queries, while the application
utility (the result of web search) does not.

(c) In OB-WSPES, we summarize and analyze the fundamen-
tal properties of existing web search privacy attacks. Then, we
systematically implement and evaluate 10 modern web search
privacy attacks on the public AOL dataset. Our results show
that modern web search privacy attacks are powerful and robust
against noise, and classification-based machine learning attacks
are more effective than clustering-based and linkage-function-
learning attacks.

(d) Leveraging OB-WSPES, we find a more efficient feature
vectorization scheme for attacks, which results in high attack
performance (with the average accuracy of 0.83) and on average 9
times faster than existing state-of-the-art methods.

(e) We analytically and experimentally evaluate the perfor-
mance of query obfuscation schemes on defending against modern
web search privacy attacks. We find that existing obfuscation
techniques are vulnerable to modern web search privacy attacks.
Surprisingly, adding more fake queries to users’ real data does
not necessarily yield better privacy. The degree of vulnerability
depends on the thesaurus used by obfuscation schemes, the util-
ity and semantic information preserved, the strategy of sending
obfuscated queries, etc.

We open source OB-WSPES 1 to enhance the diversity and
availability of the platform, and to facilitate the research in this
area

2 Background & Motivation
In this section, we study existing obfuscation-based private web
search schemes and attack techniques. Furthermore, we introduce
our two major motivations for building OB-WSPES.

2.1 OB-PWS Status Quo

Generally, existing Obfuscation-based Private Web Search (OB-
PWS) techniques can be classified into three categories. We
discuss each category as follows.

Query Injection. To obfuscate user queries, a simple method
is injecting dummy queries into users’ query set. A straightforward
scheme is Naive Query Injection (NQI), which randomly samples

1. OB-WSPES: https://github.com/ChengkunWei/OB-WSPES
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QWSP Gervais et al.’s attack [27]
SimAttack Petit et al.’s attack [31]
K-means k-means clustering
SVM Support Vector Machine
NB Naive Bayes
LR Logistic Regression
RF Random Forest
GBC Gradient Boosting Classifier
NC Nearest Centroid
DTC Decision Tree Classifier
MLP Multilayer Perception

other users’ queries as dummy queries for the target user. This
method is scalable and easily deployable. Yet, it has been proven
vulnerable to Web Search Privacy (WSP) attacks [27]. Ye et al.
proposed Noise Injection for Search Privacy Protection (NISPP)
[11] and gave the first theoretical analysis on query injection,
which models the search privacy threat as an information inference
problem and injects noises into users’ queries to minimize privacy
breaches. TrackMeNot (TMN) [1] is a popular and publicly avail-
able browser plugin, and protects web users against data profiling
by simulating HTTP search requests to the search engines. Its
fake queries are extracted from a static seed list of query terms or
a dynamic query list which is generated by observing the search
results of user queries.

Profile-based Obfuscation. Another popular idea to protect
query privacy is profile-based obfuscation. Generally, there are
two ways. One is to make the target user profile more general.
The other is to split the user profile into several parts. In PRivAcy
model for the Web (PRAW) [8], Elovici et al. used a profile meter
to monitor user profile, and generated dummy queries to make the
user profile more general. Like PRAW, Monedero et al. proposed
Optimized Query Forgery for Private Information Retrieval (OQF-
PIR) [29] that provides a theoretical approach to generate fake
queries by measuring the Kullback-Leibler divergence between the
user profile and the population distribution, which was designed
to achieve perfect user profile obfuscation by assimilating the user
profile to the average population profile. Recently, there have been
works that seek to split user profile. In Dissociating Privacy Agent
(DisPA) [3], [5], Juarez et al. classified user queries into several
sets of categories based on taxonomy of Open Directory Projcet
(ODP) [64], and gave each set of queries a virtual identity. It
follows that user profile was divided into several parts, and it was
difficult to perform re-identification by using dissociated logs [4].

K-anonymity. K-anonymity has been widely used in
anonymizing data. A release of queries is said to have the k-
anonymity property if the query cannot be distinguished from
at least k-1 other queries contained in the release [6]. One of
the most popular schemes is GooPIR [2], which provides k-



3

anonymity and disguises the query keywords by adding a certain
number of dummy keywords to each real query, then connects
real query and fake queries with or, and sends them together to
Google. Another work is [37], where Xu et al. considered the
dynamics of web search users and proposed the notion of online
anonymity which provides k-online-anonymity. Furthermore, in
[9], [10], Murugesan et al. proposed Plausibly Deniable Search
(PDS) by using the singular-value-decomposition approach to
generate cover queries that have characteristics similar to the real
queries, which aims to prevent the real queries “standing out” from
the cover queries. Ahmad et al. [60], [61] proposed intent aware
query obfuscation mechanisms which submit k additional cover
queries and corresponding clicks with each real query, which act as
decoys to mask users’ genuine search intent from a search engine.

Motivation 1: Based on current obfuscation techniques, we
have the following remarks.

• No unified utility metrics to evaluate the obfuscation
mechanisms. On one hand, most, if not all, existing OB-
PWS works have not been thoroughly evaluated with
respect to the utility and the resistance to WSP attacks.
They only conducted limited evaluations on their utility
preservation (e.g., category entropy and user profile) which
are insufficient to understand their value of web search pri-
vacy and applications (e.g., personalization of web search).
On the other hand and more importantly, to the best of our
knowledge, no work has proposed unified evaluation cri-
teria for obfuscation schemes to evaluate OB-PWS utility
and the resistance against modern WSP attacks. Although
there are many obfuscation mechanisms, we still do not
have good understanding of the main factors that affect
the privacy and utility, and how to choose the appropriate
method to protect users’ web search privacy. To address
this problem, we present a unified utility metrics system in
Section 4.

2.2 WSP Attacks

The goal of the adversary is to identify the real queries from a
set of observed data. Conceptually, there are two types of WSP
attacks. One is linkage attack whose objective is to determine
whether the observed queries belong to the target user. The other
is distinguishing attack which aims to separate users’ real queries
from the mix of real and fake data. Both attack mechanisms are
independent yet related. They are independent because they are
based on fundamentally different principles. Yet, they resemble
similar binary classification problems where one tries to divide
the instances of two classes when mixed together. Because of this,
from a technical perspective, we classify WSP attacks into two
categories: Classification/Clustering Attack and Linkage Function
Learning Attack. We discuss them as follows.

Classification/Clustering Attack. When an adversary at-
tempts to distinguish users’ real queries and infer users’ interests,
it is straightforward to take advantage of classification or clus-
tering algorithms to filter out valuable information. For example,
Al-Rfou et al. [32] made a simple clustering method (Partitioning
Around Medoids) against TMN, while achieving high precision
in finding users’ real queries. Another work by Shapira et al.
[22] examined PRAW’s ability to withstand clustering attack. It
shows that an eavesdropper cannot derive an accurate estimation
of the user profile, and claims that PRAW can resist against clus-
tering attack to some extent. In [30], Petit et al. measured TMN

TABLE 2: Analysis of existing WSP attack techniques. DF=

training data free, Scal.=scalable, Prac=practical, Rob.= robust
to noise,

√
=true, G#=partially true, _ =conditionally true, and

✗=false.

DF Scal. Prac. Rob.

SVM ✗
√

_
√

NB ✗
√

_
√

RD ✗
√

_
√

NC ✗
√

_
√

DTC ✗
√

_
√

GBC ✗
√

_
√

LR ✗
√

_
√

MLP ✗
√

_
√

K-means
√ √

_
√

SimAttack ✗
√

G#
√

QWSP ✗ ✗ G#
√

using several classification algorithms, e.g., Logistic Regression,
Decision Tree, Random Forest and ZeroR. Its results demonstrate
that a search engine equipped with only a short-term history of a
user’s queries can break the privacy guarantees of TMN by only
utilizing off-the-shelf machine learning techniques. Furthermore,
other powerful classification methods [49], [50], [51] could also be
used to identify users’ real queries, e.g., Support Vector Machine,
Naive Bayesian and Gradient Boosting Classifier.

Linkage Function Learning Attack. Generally, the key idea
of the linkage function learning attack is to learn a linkage function
that predicts the relationship between two query activities (e.g.,
whether they are issued by the same user or not), irrespective
of the type of obfuscation algorithms. Recently, more schemes
on linkage function learning attack have been proposed. In [31],
Petit et al. proposed SimAttack that learns a linkage function
to capture the distance between a query and the target user’s
profile. In another work [27], Gervais et al. proposed a generic
quantitative framework, applying machine learning techniques
(e.g., Gradient Boosted Regression Trees (GBRT) [28]) to learn
a linkage function that predicts the relation between two queries.
Then, a clustering method was used to partition the set of observed
queries. Note that the above methods can complement each other.

2.2.1 WSP Attack Analysis

In this subsection, we discuss the performance of WSP attacks.
We analyze them under different conditions, including training
data/training data free, robustness to noise, scalability and prac-
ticality to each obfuscation scheme. For convenience, in the
rest of this paper, we denote classification-based attack as CLA,
clustering-based attack as CLU, Petit et al.’s attack [31] as SimAt-
tack, and Gervais et al.’s attack [27] as QWSP. CLA attacks are
very effective, which have been proven by previous work [30]. For
CLA, we discuss representative methods including Support Vector
Machines (SVM), Naive Bayes (NB), Logistic Regression (LR),
Random Forest (RF), Gradient Boosting Classifier (GBC), Nearest
Centroid (NC), Decision Tree Classifier (DTC) and Multilayer
Perception (MLP). For CLU, although many powerful algorithms
have been proposed, the methods used in WSP attacks are K-
means or its variant, e.g., PAM. Thus, we discuss K-means in
CLU. As for linkage learning attacks, we discuss SimAttack and
QWSP. We show our analysis results in Table 2 and discuss as
follows.

As for training data/training data free, all CLA attacks are
supervised learning, which needs training data (e.g., a periodic
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TABLE 3: Analysis of Obfuscation vs WSP attacks,
√

, _, ✗= the
obfuscation scheme is vulnerable, conditionally vulnerable, and
invulnerable to WSP attacks, respectively.

NQI TMN NISPP PRAW OQF−PIR DisPA GooPIR PDS

SVM
√ √

_ _ _ ✗ _ _
NB

√ √
_ _ _ ✗ _ _

RD
√ √

_ _ _ ✗ _ _
NC

√ √
_ _ _ ✗ _ _

DTC
√ √

_ _ _ ✗ _ _
GBC

√ √
_ _ _ ✗ _ _

LR
√ √

_ _ _ ✗ _ _
MLP

√ √
_ _ _ ✗ _ _

K-means
√ √

_ _ _ _ _ _
SimAttack

√ √
_ _ _ _ _ _

QWSP
√ √

_ _ _ _ _ _

tagged data of users’ real queries and dummy queries) to train the
classifier. However, CLU attacks may perform well without the
seed information, because their key idea is to assign n objects into
a cluster and minimize the cluster’s width while maximizing the
cluster separation. Similar to CLA, most linkage function learning
schemes need training data to enhance attack effectiveness, e.g.,
SimAttack needs user query logs to build the user profile and
QWSP needs labeled training data to build the linkage function.

We consider both CLA and CLU are conditionally practical,
and CLA methods are more practical and scalable than CLU. This
is because most linkage or distinguishing attacks resemble binary
classification problems. Thus, CLA is more widely applicable than
CLU. Many articles have analyzed CLU/CLAs’ advantages and
disadvantages. Thus, we omit the details of the comparison.

For SmiAttack [31], compared with naive classification meth-
ods, it improves the performance of the attack results on TMN
by 23%, while decreasing the execution time by two orders of
magnitude. However, it may only be partially practical. This is
because SimiAttack makes use of user’s profile to learn the linkage
function. If the obfuscation mechanism aims to change user’s
profile or injects too many dummy queries, it will result in a more
general or completely different user profile, which may leads to a
precipitous decline in SimAttack’s effectiveness.

Specifically, we consider QWSP [27] conditionally practical
and not scalable. Although the key idea of QWSP is great
which inspired us to build an evaluation system, in practice, the
effectiveness of its algorithm depends too much on structural
feature extraction. It is difficult to extract enough important fea-
tures from the queries that are protected by obfuscation schemes.
Furthermore, the computational complexity limits the scalability,
and the computation time grows polynomial with the number of
queries. Thus, this scheme may not be suitable for large-scale
query processing.

2.2.2 OB-PWS vs WSP Attack Analysis
In this subsection, we analyze the vulnerability of obfuscation
mechanisms against WSP attacks. Specifically, understanding
the vulnerability/resistance of state-of-the-art query obfuscation
schemes against modern WSP attacks is still an open problem.
After carefully analyzing existing obfuscation and WSP attack
techniques, we summarize the vulnerability of existing obfusca-
tion schemes in Table 3 and discuss as follows.

In query injection based obfuscation schemes, it has been
shown in both academia and practice that the NQI and TMN
schemes cannot protect the user search query privacy against WSP
attacks [27], [30], [31], [32]. Diverse approaches have been suc-
cessfully applied to attack TMN or NQI, including classification-
based [30], clustering-based [32] and linkage function learning
methods [27], [31]. Therefore, NQI and TMN are vulnerable to

all the existing WSP attacks. For NISPP, it could control the ratio
between dummy queries and real queries. The effect of NISPP
may change with different ratios of dummy queries to real queries.
Thus, NISPP is conditionally vulnerable.

For profile based obfuscation schemes, as we have mentioned
before, two different ways can be used to protect users’ profile.
On one hand, PRAW and OQF-PIR generate dummy queries to
make users’ profile more general or dissimilar with the original.
It follows that obfuscation methods like PRAW and OQF-PIR are
conditionally vulnerable to WSP attacks. The extent of private
information leakage depends on the column of injected dummy
queries and the dissimilarity between fake and original profiles.
On the other hand, DisPA divides user queries into parts according
to the ODP taxonomy and gives each part of queries a different
identity, so as to mislead the search engines or adversaries to make
an incomplete profile of the user. In the face of classification based
attack algorithms DisPA is invulnerable because of lack of tagged
fake data to train the classifier. The linkage function learning
attacks and the CLU methods may be helpful in this scenario.
It follows that DisPA is conditionally vulnerable to both CLU
and linkage function learning attacks. The degree of vulnerability
depends on the extent of dissimilarity between fake and original
profiles, and how much utility is preserved.

K-anonymity based obfuscation schemes are conditionally
vulnerable to modern WSP attacks. The reasons for this are as
follows. As k-anonymity was initially designed for traditional
relational data, which makes a user semantically indistinguishable
from k-1 other users. When researchers extended k-anonymity to
obfuscate users’ query, they designed schemes to make k queries
structurally indistinguishable with respect to structural semantics,
e.g., term numbers and query entropy. However, even if users’
queries cannot be distinguished with respect to some structural
semantics, they can be discovered by additional semantic features,
e.g., topic distance, ODP distribution, ego-surfing and combina-
tions of several semantic features. Therefore, as long as utilities
are preserved in the obfuscated queries, the k-anonymity based
schemes are susceptible to modern WSP attacks. The degree of
vulnerability is dependent upon the level of utilities it preserved.

In summary, based on our analysis, obfuscation schemes are
still vulnerable to modern WSP attacks. The fundamental reasons
include: first, existing obfuscation schemes only destroy partial
semantics features (e.g., query topics, query terms frequency) to
ensure that obfuscated queries are indistinguishable with respect
to some properties. However, additional semantic features (e.g.,
queries’ topic distance, temporal pattern) can still enable effective
WSP attack to user queries; and second, as one of the main
objectives, all the obfuscation schemes try to preserve as much
utility as possible. However, the more utilities it preserves, the
easier real queries to be spilted from obfuscated data. There is
always a tradeoff between utility and security.

Motivation 2: Based on current attack techniques, we have
the following remarks.

• No practical system comprehensively evaluate the re-
silience of obfuscation algorithms in defending against
web search privacy attacks. On one hand, some abstract
models and evaluation frameworks only focus on theoret-
ical analysis. For example, Balsa et al. [52] proposed an
abstract model and an associated analysis framework to
systematically evaluate the privacy protection offered by
OB-PWS algorithms. In this model, we can only study
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Fig. 1: System overview: Obfuscation-based Web Search Privacy Evaluation System.

the operation principles of OB-PWS algorithms in theory.
On the other hand, most quantification frameworks only
focus on one aspect of obfuscation schemes or attack
techniques. For example, Gervais et al. [27] quantified
privacy of the users with respect to linkage attacks, and
Peddinti et al. [30] focused on TMN and Tor. There is
no practical system which allows researchers or users
to conduct comprehensively study of existing or newly
developed obfuscation/WSP attack techniques. To solve
this problem, we present a practical evaluation system OB-
WSPES in Section 3.

3 OB-WSPES Framework

In this Section, we introduce OB-WSPES, a practical system to
understand the resistance/vulnerability of state-of-the-art obfusca-
tion schemes against modern WPS attacks. Firstly, we present the
framework of OB-WSPES, which composes of 4 modules and ag-
gregates 5 obfuscation schemes and 10 attack mechanisms. Then,
we introduce a set of unified evaluate metrics for obfuscation
mechanisms.

As shown in Figure 1, the system is composed of the following
main components: OB-PWS Module, Feature Extraction Module,
Attack Module, and Evaluation Module. We provide high-level
details of these components.

3.1 OB-PWS Activity Modeling

When it comes to model OB-PWS activity, two natural questions
arise: 1) What is OB-PWS activity? and 2) How to model OB-
PWS activities?

To answer the first question, we describe OB-PWS activities
into five steps: 1) users’ real queries are sent or intercepted by the
obfuscation mechanism; 2) the obfuscation mechanism generates
dummy queries based on the algorithm and parameter settings; 3)
the real or dummy queries are transmitted to the search engine
according to the sending policy (e.g., send in sequential or regular
intervals); 4) in response, the search engine retrieves a result page
consisting of a ranked list of web pages; and 5) the user clicks and
browses relevant documents or further refined queries to fulfill the
information need.

Generally, there are two key points of obfuscation mecha-
nisms. One is the dummy queries content, which relies on sources
of fake queries, generation algorithms, etc. Another key parameter
is the way of interleaving fake and real queries. For example, the
obfuscation mechanism may send real queries together with fake
queries or send fake queries at regular intervals.

To evaluate obfuscation mechanisms, we model OB-PWS
activity as six-tuples e: 〈u, q, d, t, r, c〉, where u is the user identity
(e.g., user name, cookie identifier and IP), q is the real query sent
to the search engine, d is the list of dummy queries generated by
the obfuscation mechanism, t is the list of time-stamps at which
users’ real or dummy queries are issued, r is the result page of
the search engine, c is the web page clicked by the user. For a
target user u, the search activities of user u could be denoted as
S u: {e1, e2, ...en}. Based on these six-tuples, we could treat the
obfuscation mechanism as a black box and model any obfuscation
algorithm or tool’s activities.

3.2 Feature Extraction

In the process of feature extraction, we need to solve two prob-
lems: 1) What privacy information should be extracted? 2) How
to vectoring such information?

Generally, the privacy information extracted from users’
queries could be classified into two categories: explicit privacy
information and implicit privacy information.

Explicit Privacy Information refers to Personally Identifiable
Information (PII) embedded in the query itself, such as the
user’s vehicle registration plate number and the living address.
In addition, people might search his/her own name for a variety
of reasons (e.g., entertainment, finding celebrities with the same
name) which is also known as “ Ego-surfing” [33].

Implicit Privacy Information refers to sensitive informa-
tion that cannot be learned directly from the queries. In this
case, machine learning algorithms and data mining techniques
(e.g., Natural Language Processing) are used to aggregate user
information (possibly from various sources), extract user privacy
information and build a profile of the user. For example, it is
possible to accurately infer demographics traits (e.g., age, gender,
political and religious views) from users’ search logs [34].

Besides information extraction, feature vectorization is also
a very important part of feature extraction. A feature vector
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in web search is an n-dimensional vector that represents user’s
query. Different vectorization methods may lead to different results
in accuracy and efficiency. Currently, the feature vectorization
methods applied by most attack schemes are statistical techniques.
For example, word count frequency models like n-grams model
and simple bag-of-words models like TF-IDF [31] [30]. However,
with the evolution of text-based feature extraction techniques,
word embedding approaches (e.g., Word2Vec [35], Glove [36])
may perform much better than word count frequency models
in feature vectorization. We will evaluate the effect of different
vectorization methods in subsection 5.4.

3.3 Obfuscation Mechanism Attacking

In the attack stage, the objective of the adversary is to partition the
set of events in S and determines which one associated with the
target user. By exploiting the prior knowledge of the obfuscation
mechanism and user’s query logs, attack methods could learn a
prediction function P (qi, ui), where qi is the queries observed
by the attacker, ui is the target user and P (qi, ui) indicates the
probability that the query qi belongs to the target user ui. In
addition, we assume the following about the prior knowledge of
the attacker.

Obfuscation Mechanism. An attacker may have knowledge
about the obfuscation mechanism in advance, or he/she can infer
the behavior of the mechanism by observing its output. Apart
from knowing the exact obfuscation mechanism, the adversary
is likely to be aware of the parameter settings in the mechanism
(e.g., number of fake queries, the interval of sending queries).

Log History of Users’ Queries. The adversary possibly has
accessed the log history of users’ queries. He/she could infer the
time continuity and content relevance of user’s queries (e.g., query
sessions, topic distribution of queries) based on the collection of
search activity, and additionally build exact models for users.
Thus, further empowering him to predict users’ real queries
effectively.

For attack methods we have analyzed in Section 2, their unan-
imous goal is to separate the fake queries from real queries. Thus,
we could relieve the differences in specific algorithms and treat
the attack function as a black box. We feed the prior knowledge
and obfuscated queries to the attack mechanism. The output of
the attack mechanism are the prediction functions P (qi, ui) that
quantify the relationship between queries and users. The attack
results could be further used to evaluate the performance of
obfuscation mechanisms or WSP attacks.

3.4 Evaluation Module

Obfuscation mechanisms could be evaluated from two perspec-
tives: the level of utility retained and the ability to resist attacks.
To this end, two main aspects of the evaluation could be done.

The Level of Utility Retained. The utility is one of the es-
sential attributes for obfuscation schemes. Lower usability means
the user could not get the desired retrieval results. In this case,
users will abandon the obfuscation tool, and the obfuscation
algorithm will be meaningless. In OB-WSPES, we propose utility
metrics mentioned in Section 4 to quantify the level of utility
that obfuscated queries retained, and assess the availability and
effectiveness of the obfuscation mechanisms.

The Ability to Resist Attack. Although there are many
obfuscation schemes and attack methods, there is no practical sys-
tem to comprehensively evaluate the performance of obfuscation

TABLE 4: Metrics for query evaluation.

Metric Description

NQC Number of characters in the query
QE Entropy of the frequency of terms in the query
ODP1D Distribution of level 1 categories in the ODP taxonomy
ODP1E Entropy of ODP level 1 category
ODP2D Distribution of level 2 categories in the ODP taxonomy
ODP2E Entropy of ODP level 2 category

PWS J Jaccard distance of the query result lists
PWS E Edit distance of the query result lists
UP User profile

mechanisms in defending against state-of-the-art attack methods.
To solve this problem, we use different parameter settings for
different obfuscation mechanisms to deal with various attacks.
Through the analysis of attack results, we can find out the optimal
parameter setting in the presence of a specific attack, and the most
effective attack methods on a specific obfuscation scheme. We
can also make suggestions for the strengths or weaknesses of the
obfuscation/attack mechanisms.

4 Unified Evaluation Metric
In this section, we propose a set of unified query utility metrics
to evaluate the performance of different obfuscation schemes.
We comprehensively analyze the utility of existing OB-PWS
algorithms and conduct the detailed resistance analysis in Section
4.3.

We focus on semantic features that are used in Natural Lan-
guage Processing (NLP). White et al. [26] analyzed the extractable
features of search activity in detail. Further, Gervais et al. [27]
extracted 12 semantic features for query events and analyzed the
relative importance of features in attacks (Appendix, Table 9 and
Table 10). Based on this, we leverage the most important features
whose relative importance is higher than 10 in Table 10 and group
them into query utility metrics and application utility metrics.

4.1 Query Utility Metric

Query utility captures how many basic attributes are retained
in the obfuscated queries. The first two basic features are the
frequency of terms in the query and the number of characters
in the query which have relative high importance in Table 10. For
the number of characters in the query, we define the Number of
Query Characters (NQC) metric which refers to the number of
characters nc in queries. For the the frequency of terms in the
query, we define the Query Entropy (QE) metric which refers
to the entropy of the frequency of users’ queries and defined as
H(F) = −

∑n
i=1 fi log2( fi), where F = { f1, · · · , fn}, and fi is the

i-th query term frequency.
The topic of query statements is another important attribute.

We compute the topics associated with the query according to
the Open Directory Project (ODP) [64], an openly available
hierarchical ontology. We use ODP for categorizing queries into
different semantic categories. The ODP dataset contains about
3.48 million web sites. The categories are organized within a tree,
having the root as the common top category. Every category in
the ontology has a path to the root. There are about 1.03 million
categories as the leaves in the ODP dataset. Given a query, we
calculate the ODP category of the query. First, we retrieve the
top 10 relevant URLs in the ODP dataset. Second, for each URL
(e.g., http://curlie.org/Arts/Crafts) or domain of the URL (e.g.,
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http://curlie.org), we find the categories associated with it in the
ODP dataset. Finally, we categorize the query as the most common
category of the top 10 URLs.

After obtaining the ODP categories of queries, we calcu-
late the topic based metrics which include the level 1 (e.g.,
Top/Arts) and level 2 (e.g., Top/Arts/Music) ODP categories.
Specifically, we calculate: 1) ODP Level 1 Category Distribution
(ODP1D), D1 = {d11, · · · , d1n}, which refers to the distribution
of level 1 categories in the ODP taxonomy; 2) ODP Level 1
Category Entropy (ODP1E), which is defined as the entropy
of level 1 categories in the ODP taxonomy and defined as
H(D1) = −

∑n
i=1 p(d1i) log2 p(d1i), where p(d1i) is the probability

of the i-th category in D1; 3) ODP Level 2 Category Distribution
(ODP2D), D2 = {d21, · · · , d2n}, which refers to the distribution
of level 2 categories in the ODP taxonomy; 4) ODP Level 2
Category Entropy (ODP2E), which is defined as the entropy
of level 2 categories in the ODP taxonomy and defined as
H(D2) = −

∑n
i=1 p(d2i) log2 p(d2i), where p(d2i) is the probability

of the i-th category in D2.

4.2 Application Utility Metric

In reality, queries are used for information retrieval, high-level ap-
plications, etc. Therefore, besides examining queries’ fundamental
utilities, it is crucial to ensure that the obfuscated queries are
valuable for practical applications. Toward this end, we evaluate
two important application utility metrics as follows.

Personalization of Web Search (PWS). Personalization of
web search, where different users searching for the same terms
may observe different results, has been implemented by major
search engines (e.g., Bing, Google) [12]. Personalization provides
obvious benefits to users, including disambiguation and retrieval
of locally relevant results to optimize users’ decisions. Generally,
there are two approaches to personalize search results, one in-
volves modifying the user’s query and the other re-ranks the search
results [14].

To measure PWS, we set the control group as the original
queries and the test group as the obfuscated queries. We submit
both groups of queries to the search engine and collect the
search results. Note that the detailed methods for collecting search
activity is presented in Section 5.2. To measure the difference
of each real query’s search results between the test group and
the control group. We apply the similar metrics used by [13] to
measure personalization characteristics.

First, to measure the overlap of search results, we measure the
jaccard index of PWS (PWS J), which views the result lists as
sets and is defined as the size of the intersection of the union.

PWS J = J(Rtest,Rcontrol) =
|Rtest ∩ Rcontrol|

|Rtest ∪ Rcontrol|

where Rtest = {r1, · · · , r10} (resp., Rcontrol) is the search result
list of the test group (resp., control group). A Jaccard Index of 0
represents no overlap between the search lists, while 1 indicates
they contain the same result set.

Second, to measure the ranking of web search results, we
compute the edit distance of PWS (PWS E), which computes
the number of the list elements that must be inserted, deleted,
substituted, or swapped to make the control group result list
identical to the test group result list and defined as PWS E =

DDL(Rtest,Rcontrol), where DDL is the Damerau-Levenshtein dis-
tance [63]. For example, if Rcontrol = {r1, r2, r3, r4, · · · , r10} and
Rtest = {r4, r2, r1, r3, · · · , r10}, which needs two steps to change

TABLE 5: Analysis of existing query obfuscation techniques.
√

=preserving the utility, G#=partially preserving the utility,
_=conditionally preserving the utility depending on parameters
and considered data, ✗=not preserving the utility, and n/a =

evaluation not available in existing works.

NQI TMN NISPP PRAW OQF-PIR DisPA GooPIR PDS

NQC
√

G# G# _ _ _ G# ✗
QE

√
G# G# _ _ _ G# ✗

ODP1D
√

G# G# _ _ ✗ _ _
ODP2D

√
G# G# _ _ ✗ _ _

ODP1E
√

G# G# _ _ ✗ _ _
ODP2E

√
G# G# _ _ ✗ _ _

PWS
√

G# _ _ _ G# _ _
UP

√
G# _ _ _ G# _ _

R2WSPA ✗ ✗ n/a ✗ n/a n/a ✗ n/a

Rcontrol to Rtest, {r1, r2, r3, r4, · · · , r10} → {r4, r2, r3, r1, · · · , r10} →

{r4, r2, r1, r3, · · · , r10}, and thus the Damerau-Levenshtein distance
between Rcontrol and Rtest is 2. The smaller the value of edit
distance, the closer the ranking of the two result lists.

User Profile (UP). A user profile is the representation of a
user model, which refers to the explicit digital representation of a
person’s identity [16]. User profile technologies can be applied in
many meaningful applications, e.g., web mining, recommendation
systems and social networking. We could construct user profile
in two ways: explicitly, e.g., asking for registration information
about user interests or ratings, or implicitly, e.g., using Natural
Language Processing (NLP) techniques to extract user interesting
topics. Generally, the search engine generates user profiles based
on click logging, query history, browsing history, click-through
history, etc. [17].

In this paper, we focus on query history and build the user
profile on queries sent by each user [18]. First, we vectorize
the query statements with Natural Language Processing (NLP)
techniques. Then, we build the profile of each user based on its
query history. We calculate the cosine simmilarity between the
profile of obfuscated queries and the original queries.

4.3 Privacy vs Utility Analysis

We discuss the utility performance of existing query obfuscation
techniques and summarize the query utility metrics, application
utility metrics, and Resistance to WSP Attacks (R2WSPA) (e.g.,
[22], [27], [31]) of existing query obfuscation schemes in Table 5
and analyze as follows.

In query injection schemes, diverse strategies have been ap-
plied to inject dummy queries. There are two main differences
between query injection schemes, fake data sources and obfus-
cation algorithms. For example, Naive Query Injection (NQI)
randomly samples other users’ queries as dummy queries for the
target user. It follows that the correlation between dummy queries
and real queries is very low, and it is obvious that NQI preserves
most utility properties. However, due to the fact that the semantic
similarity (e.g., similarity of query topics) of user’s actual query
statements is very high, NQI is also the most vulnerable scheme to
WSP attacks. Compared with NQI, TMN contains two fake query
sources, one is a static feed list of query terms and the other is
a dynamic query-list which generates fake queries by observing
a user’s previous search activities. It follows that TMN partially
preserves query and application utility metrics. Another work
NISPP [11] gets dummy queries from a set of other user queries
based on a certain probability. In addition, it can manually set the
privacy level and change the sequence of issued queries. It follows
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that NISPP can partially preserve query utility and conditionally
preserve application utility.

For profile-based schemes, the fundamental idea is to perturb
the adversary’s observed profiles so as to protect users’ privacy. On
one hand, DisPA [3] splits a user profile into several sub-profiles,
which change the structural properties of the user’s profile. It
follows that it cannot preserve the ODP1D, ODP2D, ODP1E
and ODP2E utility, while conditionally or partially preserving
the NQC, PWS and UP utility. On the other hand, PRAW [8]
and OQF-PIR [29] make use of dummy queries to make the user
profile more general, which conditionally preserve all the utility.
Particularly, the more dummy queries are added, the fewer utility
it is preserved. Furthermore, PRAW defends against clustering
attacks was shown in [22].

K-anonymity schemes [2] [23] can partially or conditionally
preserve most query and application utility metrics. This is be-
cause the fundamental idea of the k-anonymity based scheme is to
make k queries similar in some statistic features. However, there
is always a trade-off between obfuscation and utility. If the k is
large, more features will be destroyed, and more utilities will be
lost. If the k is selected to be small, more utilities will be preserved
at the cost of lower obfuscation level. Furthermore, most k-
anonymity schemes choose fake queries from the thesaurus, hence
the query utility NQC and QE may be partially lost. For example,
GooPIR checks the popularity of keywords in the real query and
selects k-1 words from a prepared thesaurus. The selected words
have a similar level of popularity with the real query so as to
prevent the real query from appearing more frequently. As for
PDS [9], query privacy is achieved by replacing a real query with
a set of canonical queries. It uses seed documents to construct
discrete canonical sets and only the canonical queries could be
sent to the search engine. Consequently, this scheme destroys
the NQC and QE utility metrics. In addition, there is a definite
connection between canonical queries and real queries. Thus, PDS
conditionally preserves ODP1D, ODP1E, ODP2D, ODP2E, PWS,
and UP. Furthermore, GooPIR could not defend against WSP
attacks as shown in [31].

In summary, most of the obfuscation schemes can partially
or conditionally preserve most utility metrics. Multiple factors
can affect the availability of obfuscation mechanisms, e.g., source
of fake queries, obfuscation algorithms, and the ratio of dummy
queries to real queries. No existing work evaluates the resistance of
state-of-the-art obfuscation schemes against modern WSP attacks.
Although most of the schemes have theoretical privacy guarantees,
unfortunately, the privacy analysis cannot guarantee that they can
defend against modern PWS attacks due to the improper model of
the adversary’s auxiliary information, problematic assumptions,
etc. To address this open problem, we analyze and verify the ef-
fectiveness of existing query obfuscation schemes against modern
WSP attacks in Sections 2 and 5 respectively.

We make further remarks on OB-WSPES and its modules and
functions as follows.

(a) OB-WSPES provides a platform which enables the user
to evaluate the obfuscation methods, and conveniently choose
modern obfuscation algorithms to obfuscate queries. In addition,
they can also employ different attack methods and evaluation
modules to examine whether the obfuscated data could satisfy
the security/privacy and utility requirements.

(b) OB-WSPES is a uniform platform that allows web search
obfuscation researchers to compare their obfuscation schemes
with existing solutions as well as to examine their schemes’

resistance against modern PWS attacks. OB-WSPES also permits
WSP attack researchers to evaluate the performance of new WSP
attacks by attacking the obfuscated queries for state-of-the-art
obfuscation schemes. Therefore, OB-WSPES is helpful to both
data owners and researchers in conveniently applying existing
schemes, comprehensively understanding existing algorithms and
effectively developing novel techniques.

(c) Besides providing a uniform platform, OB-WSPES is an
easily portable and extendable system. First, the algorithm in OB-
WSPES are implemented in Python and thus they are system
independent. Second, as shown in Fig.1, multiple modules can
work together to perform query obfuscation and WSP attack
evaluation. Additionally, all the modules of OB-WSPES can
work individually. Third, all the schemes/measurements within
each module are independent, which means that they can be im-
plemented, evaluated and employed independently. Furthermore,
newly developed obfuscation/WSP attack schemes and utility
metrics can be easily integrated into OB-WSPES.

5 Evaluation of OBWSPES
5.1 Primary Dataset

We employ the AOL dataset [40], which is a real web search
dataset in 2006. This dataset contains approximately 21 million
queries from nearly 650,000 users during a three month period. To
collect real and rich search activities, we focus on the most active
users. Specifically, we choose 174 users, and they have 301,389
queries. Note that [27] has shown the effectiveness of sampled
dataset is adequate to estimate the overall distribution of attack
performance.

5.2 Search Activity Collection

In order to gather realistic user search activities, we simulate and
log each user’s real search activities taking advantage of web
crawler (Selenium) to control browser. First, we associate each
user with a fake account. The crawler will initialize each user’s
profile in the browser (e.g. new cookie and empty history) when
it starts searching for the user’s queries. Second, each user’s real
queries will be sent in the original order of the AOL dataset. On
one hand, users’ search behaviors are relevant in terms of content
and temporal characteristics (e.g., search sessions and search
refinements) [62]. On the other hand, the search history will affect
the personalized results returned by the search engine [13]. Finally,
we collect search activities as described in Section 3.1. The real
query is sent to the obfuscation mechanism, and then real query
and dummy queries are issued to the search engine according to
the sending strategy. We record the real query, dummy queries,
and the time-stamps each query is issued. Then, we save the pages
returned by the search engine, in which we focus on the top 10
results [13].

Particularly, as for TMN which is a popular plugin, we install
the TMN (Version 0.10.4) into the browser and use the default
setting (e.g., query frequency 10 per minute, enable burst and
default RSS feed). TMN stores the search activities (e.g., real
queries, dummy queries and URL) in the search log when we
issue user’s queries. To collect search activities, we issue user’s
queries with a TMN equipped browser and collect the real-time
search logs in TMN.

As for GooPIR, we download and extract the GooPIR (Version
1.0). We use the original files (one month wiki news) contained
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TABLE 6: Obfuscation vs Utility. Average utility metrics of obfuscated data vs original queries. k is the ratio of dummy queries to real
queries.

k NQC QE ODP2E ODP2D ODP3E ODP3D PWS J PWS E UP

TMN Def. 0.9971 1.005 1.0310 0.9993 1.0932 0.9778 0.1507 9.5961 0.7959

NQI 1 0.9938 1.0096 1.1087 0.9883 1.2475 0.9811 0.3372 8.4952 0.8958
NQI 4 0.9907 1.0095 1.1923 0.9202 1.4735 0.8724 0.7133 5.7739 0.8972
NQI 8 0.9882 1.0101 1.2167 0.8527 1.5425 0.6983 0.4714 7.4948 0.8975

GooPIR 1 0.9742 0.9744 1.0099 0.9999 1.1811 0.8720 0.4266 8.1509 0.6182
GooPIR 4 0.9673 0.9733 1.2260 0.8031 1.2989 0.6537 0.5519 7.4377 0.6086
GooPIR 8 0.9569 0.9657 1.0604 0.9973 1.2078 0.9831 0.3088 8.7427 0.6526

NISPP 1 0.9775 0.9997 1.1590 0.9620 1.3728 0.9547 0.5400 7.5488 0.9007
NISPP 4 0.9516 0.9992 1.2053 0.8906 1.5105 0.8018 0.6705 6.2594 0.9011
NISPP 8 0.9502 1.0000 1.2215 0.8306 1.5584 0.6112 0.6237 6.6431 0.9015

PRAW 1 0.9935 1.0663 1.0954 0.9914 1.2149 0.9790 0.5559 6.9296 0.8785
PRAW 4 0.9905 1.0652 1.1896 0.9358 1.4724 0.8906 0.3053 8.7191 0.8851
PRAW 8 0.9905 1.0586 1.2215 0.8717 1.5650 0.7374 0.3353 8.5639 0.8877
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Fig. 2: The average ODP utility metrics with different k. k=dummy queries/real queries.
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Fig. 3: CDF of the PWS utility metrics with k=1.

in the program as the external knowledge and generate dummy
queries with the same method in [2]. The real and dummy queries
are connected by “or” and sent to the search engine.

For NQI and NISPP, we build the external knowledge based on
the queries of the sampled users in the AOL dataset. Specifically,
the NQI mechanism randomly selects dummy queries from other
users’ queries. NISPP samples dummy queries from the external
knowledge based on the privacy breaches of search queries [11].

For PRAW, the fake query is constructed from a mix of terms
from two sources. One source is the terms provided by the users’
actual search history. The other source is a database of terms which
are extracted from the user requested pages that provides random
terms relating to the general topic interest of the user. Note that
except TMN, in our framework, the external knowledge provided
for GooPIR, NQI, NISPP and PRAW could be configured.

5.3 Utility Evaluation

In this subsection, we evaluate the utility performance of obfus-
cation algorithms. We obfuscate the original user queries, then
measure how much utility are preserved in obfuscated queries.
Specifically, when measuring the utility metrics of NQC, ODP1D,
OPD2D and UP, we calculate the cosine similarity between the
distributions of the obfuscated queries and original queries; when
measuring QE, ODPE1, and ODPE2, we take the ratio between the
obfuscated queries and original queries; when measuring PWS,
we compute the Edit Distance (i.e., the Damerau–Levenshtein
distance [41] ) and Jaccard similarity between the obfuscated
queries and original queries.

The criteria for obfuscation settings is that we follow the
same or similar settings as the original works of these obfuscation
schemes. For TMN, we apply the default parameter settings, and
the query frequency is 10 per minute. In NQI, GooPIR, NISPP,
and PRAW, we adjust the ratio of the dummy queries to the
real queries from one to ten, which is enough to measure the
effect of the volume change of injected noise [8]. We denote the
ratio of dummy queries to real queries as k later in the paper.
We demonstrate the results in Table 6 and analyze the results as
follows.

Query Utility. As described in Table 6, among all the query
utilities, NQC and QE are the most insensitive metrics, where the
obfuscated queries are almost the same as the original data with
respect to both metrics. Meanwhile, ODP3E and ODP3D are very
sensitive to noise changes. They are the easiest to be destroyed
by obfuscation mechanisms. Furthermore, we have the following
discussions:
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Fig. 4: CDF of Edit Distance for GooPIR, NISPP, NQI, and PRAW with different k. k=dummy queries/real queries

(a) Generally, the query utility declines with the increasing
amount of dummy queries. For example, in Figure 2, ODP3D in
NQI changes from 0.9811 (k=1) to 0.6061 (k=10) and the ODP3D
for NQI, PRAW, NISPP significant declines with the increase of k.
The entropy (ODP3E and ODP2E) becomes larger with k, which
also means the decreases of query utility. However, the utility
performance for GooPIR is unstable. This is because the source of
fake queries for GooPIR is small and out-of-date. In many cases,
the sample method could not get enough fake queries. Thus, the
results of GooPIR may change greatly.

(b) With the same k, different obfuscation mechanisms pre-
serve different degrees of utilities. Compared with GooPIR, NQI
only preserved 69.83% (k=8) ODP3D utility. This is because
the thesaurus used by NQI is much larger than GooPIR whose
thesaurus was extracted from specific articles. Although there is
no big thesaurus as the source of dummy queries for NISPP and
PRAW, they apply different strategies of obfuscation, and show
their ability to obfuscate user queries. For example, compare with
the original queries, each of them preserves 73.74% (PRAW, k=8)
and 61.12% (NISPP, k=8) ODP3D utility.

(c) The more detailed the data is described, the more sensitive
it is to noise. For example, the character distribution of the
obfuscated queries remains the same as the original queries, while
the detailed categories of the query change significantly. The fact
that ODP3 (ODP3E and ODP3D) metrics are more sensitive than
ODP2 ( ODP2E and ODP2D) metrics shows that the more detailed
user queries classify, the more sensitive it is to query changes. This
gives us an inspiration that if we map the data to the meaningful
high dimensional space, we will get a better understanding of
obfuscation mechanisms.

Application Utility. In Table 6, we can see that PWS appli-
cation utility metrics are more sensitive than query utility metrics.
For example, most NQC and ODP2D metric results are bigger
than 0.8, while almost all PWS J metric results are less than 0.6,
which means that about 40% search results are different from the
original ones. We have the further discussions as follows:

(a) The manner of interleaving real queries and dummy queries
affects the search results. In Figure 3, compared with other
mechanisms, TMN destroys most PWS metrics (PWS J=0.1507,
PWS E=9.5961). This is because TMN sends fake queries at
a fixed time interval and in parallel with user’s real queries. In
this way, the search engine is unable to determine the user’s true
intentions which results in low availability. PWS metric results of
GooPIR are better than that of NQI. This is because NQI sends
obfuscated queries in a definite order. While GooPIR connects
real queries and fake queries with OR and sends them together to
the search engine which is more convenient to retrieve effective
information.

(b) Adding more dummy queries to users’ real data does not
yield more web search result changes. Intuitively, the PWS result
will get worse with the increase of k. However, we observe that
different obfuscation mechanisms and k lead to different PWS
results. In Figure 4, the sort of PWS performance on NISPP
is NISPP 1 > NISPP 3 > NISPP 7 > NISPP 5, and on
PRAW the sort of PWS performance is PRAW 3 > PRAW 7 >
PRAW 1 > PRAW 5. While for GooPIR and NQI, they always
have the best PWS performance when k=1. When the k is greater
than 2, the PWS performance on GooPIR and NQI almost has no
changes. Furthermore, in Table 6, we can see that the search results
of larger k may perform better than smaller k (e.g, GooPIR k=4
(PWS J=0.5519 and PWS E=7.4377) is better than GooPIR
k=1 (PWS J=0.4266 and PWS E=8.150) and NQI k=8 (PWS J
=0.4714 and PWS E=7.4948) is better than PRAW k=4 (PWS J
=0.3053 and PWS E=8.7191). This is because many factors may
affect the application utilities, e.g., queries contents, the manner
of sending queries, the ratio of dummy queries to real queries, and
the obfuscation algorithm. Therefore, when it comes to obfuscate
user queries, we should select the obfuscation tools/methods and
parameter settings depending on the corresponding scenario.

Summary. In this subsection, we evaluate the utility of ob-
fuscated queries. The evaluation results in Table 6 are consistent
with our analysis in Table 5. Most obfuscation algorithms can
partially or conditionally preserve query and application utilities.
Therefore, the obfuscated data can be employed for query log
analysis and data mining tasks. In addition, we find that query
utility declines with the increasing amount of dummy queries.
However, the application utility does not have the same nature as
query utility.

No obfuscation algorithm is optimal in preserving every utility
and more dummy queries do not mean more application utility
destroyed. Four major factors affect the utility of obfuscated
queries are: 1) the content and the size of the thesaurus; 2)
the obfuscation algorithm; 3) the manner of interleaving dummy
and real queries; 4) the ratio of dummy queries to real queries.
Therefore, when choosing obfuscation algorithms or tools, it is
better to take into account the corresponding application scenario.

5.4 Feature Vectorization Scheme
To the best of our knowledge, almost all previous trials use the
one-hot encoding scheme, while no previous literature analyzes
the effect of different vectorization schemes in the PWS area. To
fill this gap, in this subsection, we measure the impact of different
vectorization schemes (word embedding and one-hot encoding) on
the effectiveness of the attack algorithms.

Specifically, we experiment 1) Word2Vec (W2V) which has
300 dimensions and is trained by AOL, 2) One-hot encoder High
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TABLE 7: Average accuarcy and average CPU time to analyze
one user’s data.

Time (s) Accuracy
Module W2V OHH OHL W2V OHH OHL
RF 0.1015 3.6754 0.6518 0.8774 0.9031 0.8972
SVM 0.3827 31.0410 5.6986 0.8204 0.8207 0.8178
NB 0.2659 21.7176 3.9781 0.7968 0.7808 0.7698
GBC 1.0762 41.3206 7.1235 0.8284 0.8159 0.8015
LR 0.9047 36.0651 6.3222 0.8411 0.8331 0.8201
NC 0.7589 30.4581 5.3380 0.8334 0.8406 0.8191
DTC 0.6816 26.6342 4.6858 0.8310 0.8472 0.8288
MLP 1.5245 91.5149 16.3423 0.8412 0.8549 0.8375
K-means 1.4686 83.0000 15.1997 0.8061 0.8085 0.7952

dimension (OHH) which has 28,939 dimensions and is trained
by AOL, 3) One-Hot encoder Low dimension (OHL) which has
5,218 dimensions and is trained by the sampled user’s query data.
We use TrackMeNot (TMN), which has been used in previous
literature [27] [30], to obfuscate real queries. The AOL dataset
contains three months (March, April and May) of query logs. We
take OB-PWS activities in March and April as training data and
the test data are users’ last month OB-PWS activities. We train the
model based on the training data and detect the CPU time (second)
and the accuracy of the model on the testing dataset.

Table 7 shows the average accuarcy and average CPU time
to analyze one user’s data, we can conclude that W2V gets high
accuracy attack results, which is basically the same with OHH
and higher than OHL. More importantly, the average time used in
W2V to analyze one user’s data drastically reduced. For example,
in the GBC method, the average CPU time to analyze one user’s
data for OHH and OHL is 40 (41.31) times and 7 (7.12) times
longer than that of W2V (1.07) respectively.

Summary. In this subsection, we find that the word em-
bedding scheme is more efficient than previous schemes. There
are two reasons: First, users’ queries are more relevant in se-
mantic. Second, the word embedding techniques map data to
high dimensional semantic space (lower than one-hot encoding)
and preserve more semantic information than one-hot encoder
solutions, which results in the attack methods classifying real
queries out of obfuscated data more accurately and efficiently.

5.5 Obfuscation vs Attack

In this subsection, we measure the effectiveness of the state-of-
the-art obfuscation techniques against modern WSP attacks. We
employ the same AOL dataset as before. The methodology is that
we first employ different obfuscation techniques to obfuscate AOL
user data, and change the ratio of dummy queries to real queries
from 1 to 10. Then, we employ different WSP attack algorithms
to attack the obfuscated data. Specially, we employ RD, SVM,
NB, GBC, LR, NC, DTC, MLP, K-means and SimAttack against
all obfuscation mechanisms (TMN, GooPIR, NISPP, NQI and
PRAW). We show the accuracy results of WSP attacks to each
obfuscation mechanism in Table 8. From the results, we have the
following findings.

(a) Classification based attack algorithms are more effective
than clustering based and linkage function learning based meth-
ods. Figure 5 shows the cumulative distribution of accuracies
of different attacks against TMN and GooPIR. In TMN, the
average accuracy of SimAttack is 0.5820 which is much smaller
than classification based or clustering based attack algorithms. In
GooPIR, the difference is more noticeable, as the average accuracy
of classification based attacks is 1.6 times and 1.98 times of that
of K-means and SimAttack respectively.
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Fig. 5: CDF of accuracy of different attacks against TMN and
GooPIR with k=1. k=dummy queries/real queries.
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Fig. 6: The accuracy of SimAttack with the change of k. k=dummy
queries/real queries.

(b) An interesting finding is that: adding more fake queries to
users’ real data does not necessarily yield better privacy. This
finding was contrary to our intuition. Figure 6 shows that the attack
performance in SimAttack decreases rapidly with the increase
of k. However, Figure 7 shows that no matter what obfuscation
mechanism is, attack performance of classification based attack
schemes improves with the increase of k. In addition, the attack
performance in K-means is basically unchanged with the increase
of k. This finding further confirms that the classification based
attack algorithms are more effective than clustering based and
linkage function learning based methods. Besides, it shows that in
front of powerful modern WSP attacks, more dummy queries may
make an adversary more aware of the obfuscation mechanism.
Thus, the adversary could easily access valuable information.

(c) Different obfuscation strategies and sources of fake queries
result in different effects of privacy protection. Figure 8 presents
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TABLE 8: Obfucation vs Attack. The average accuracy of attacks against obfuscation mechanisms. k=dummy queries/real queries.

OB-PWS k RD SVM NB GBDT LR NC DTC MLP K-means SimAttack
TMN 1 0.8774 0.8204 0.7968 0.8284 0.8411 0.8334 0.8308 0.8412 0.8035 0.5820
GoopPIR 1 0.8830 0.8886 0.8711 0.8782 0.8798 0.8777 0.8737 0.8771 0.5041 0.4472
GoopPIR 3 0.9121 0.9152 0.8971 0.9063 0.9076 0.9031 0.9020 0.9056 0.6243 0.2250
GoopPIR 5 0.9298 0.9297 0.8992 0.9117 0.9148 0.9114 0.9125 0.9166 0.6323 0.1506
GoopPIR 7 0.9415 0.9396 0.9060 0.9192 0.9233 0.9196 0.9217 0.9260 0.6512 0.1129
GoopPIR 9 0.9481 0.9451 0.9046 0.9194 0.9251 0.9253 0.9279 0.9323 0.7206 0.0905
NISPP 1 0.7226 0.7124 0.7007 0.7141 0.7174 0.7160 0.7121 0.7179 0.5021 0.3049
NISPP 3 0.8235 0.8178 0.7853 0.7985 0.8026 0.7939 0.7926 0.7984 0.5181 0.1890
NISPP 5 0.8711 0.8672 0.8273 0.8404 0.8454 0.8326 0.8333 0.8796 0.4927 0.1380
NISPP 7 0.8985 0.8955 0.8503 0.8637 0.8694 0.8544 0.8563 0.8622 0.5053 0.1110
NISPP 9 0.9157 0.9136 0.8658 0.8793 0.8854 0.8690 0.8718 0.8778 0.4816 0.0933
NQI 1 0.6371 0.6457 0.6423 0.6544 0.6569 0.6574 0.6515 0.6575 0.5018 0.4497
NQI 3 0.7885 0.7794 0.7508 0.7661 0.7703 0.7643 0.7625 0.7690 0.5216 0.2308
NQI 5 0.8550 0.8486 0.8072 0.8222 0.8274 0.8164 0.8168 0.8233 0.4976 0.1583
NQI 7 0.8896 0.8849 0.8355 0.8509 0.8573 0.8431 0.8453 0.8521 0.5072 0.1218
NQI 9 0.9106 0.9071 0.8543 0.8698 0.8766 0.8606 0.8639 0.8707 0.5019 0.1001
PRAW 1 0.6597 0.6532 0.6612 0.6766 0.6713 0.6699 0.6649 0.6695 0.5055 0.4478
PRAW 3 0.7817 0.7655 0.7297 0.7497 0.7500 0.7458 0.7449 0.7518 0.4881 0.2338
PRAW 5 0.8467 0.8372 0.7774 0.7987 0.8022 0.7930 0.7952 0.8031 0.4656 0.1610
PRAW 7 0.8827 0.8759 0.8034 0.8258 0.8317 0.8197 0.8235 0.8319 0.5153 0.1235
PRAW 9 0.9052 0.8998 0.8195 0.8427 0.8504 0.8366 0.8418 0.8504 0.5088 0.1015
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Fig. 7: The average accuracy of different attacks aganist GooPIR, NISPP, NQI and PRAW with the change of k. k=dummy queries/real
queries.
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Fig. 8: CDF of vulnerability for different obfuscation mechanisms with k=1, 3, 7. k=dummy queries/real queries.

the vulnerability of different obfuscation mechanisms. The vulner-
ability is defined as the average accuracy of different attacks. We
can see that: with lower k, the sort of privacy protection effect is
NQI > PRAW > NISPP> GooPIR. While, with larger k the sort
of privacy protection effect is PRAW > NQI > NISPP> GooPIR.
The main reason for GooPIR being the most vulnerable to attack
is that the source of fake queries of GooPIR is a small static
data source (one month Wiki news in Octorber 2007). It is easy
for an adversary to get and analyze these data, and split user’s
real data from obfuscated queries. As we implement PRAW, NQI
and NISPP in the same source of fake queries, their principal
difference is the obfuscation strategy. Therefore, we can conclude
that strategies and fake query sources play important roles in

obfuscation mechanisms, which is consistent with our findings
in Subsection 5.2.

Summary. Based on the above results and findings, we have
the following discussions.

Among all the obfuscation techniques, we find that TMN is the
most vulnerable. There are many reasons for this, e.g., the amount
of dummy queries is not proportional to real queries, thesaurus
or RSS feeds could be learned by the adversary, the obfuscated
queries do not resemble original user queries, etc. In most cases,
PRAW performs better than the other mechanisms. This is because
the strategy used by PRAW is measuring the change of user profile
(internal and external). In addition, it not only uses static fake
query source, but also generates dummy queries based on user
search results. According to the results in Table 8 and Table 6, it
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turns out that the obfuscation strategy, the ratio of dummy queries
to real queries, the size of fake queries source, the obfuscation
algorithm and the strategy of sending obfuscated queries will
affect the performance of obfuscation mechanisms. Hence, it is
possible to design an efficient, scalable and portable obfuscation
tool in particular scenes.

All the obfuscation algorithms are vulnerable to some or all of
the modern WSP attacks, which confirms our analytical results
in Section 2. Generally, the state-of-the-art query obfuscation
algorithms are vulnerable because: First, in existing obfuscation
schemes, the explicit privacy information is not fully covered or
protected by dummy information. Because of this, naive feature
extraction methods could be used to de-anonymize user queries.
Second, users’ queries are closely related in semantic space, and
it is easy for an adversary to separate users’ real queries out of
obfuscated data when mapping user data to high dimensional
semantic space. Furthermore, the design philosophy of existing
obfuscation schemes is to preserve as much utility as possible.
However, utilities can also be used to conduct powerful WSP
attacks. There is always a tradeoff between privacy and utility.
Therefore, it is still an open problem to design effective obfusca-
tion algorithms which can defend against modern WSP attacks.

Among all the attack algorithms, classification based machine
learning methods such as GBC, RD and MLP perform much
better than other attacks in most scenarios. This is because
these algorithms can effectively combine implicit and explicit text
characteristics and assign appropriate weights to features. Other
attacks might depend too much on a single attribute. For example,
SimAttack depends on the user profile. Our evaluation results in
Section 5 consistent with our utility analysis in Section 2 that
obfuscated queries conditionally or partially preserve most utility
metrics (e.g., ODP2E, ODP3D and PWS). Furthermore, it turns
out that the more attributes or utilities the attack method can
capture, the more effective the attack is. It is possible to combine
the advantages of different attacks to develop more efficient and
flexible methods.

6 Discussion
6.1 Evolution of Obfuscation-based Web Search Privacy

To enforce unlinkability and indistinguishably of privacy web
search, a series of studies [57], [58], [59] integrated proxy-based
and obfuscation-based methods in recent years. We evaluate the
obfuscation methods of PEAS [57], X-Search [59] and CYCLOSA
[58], and discuss the results in Appendix B. The experimental re-
sults again confirm our findings in Section 5. Next, we discuss the
evolution of obfuscated-based privacy web search mechanisms.

The primitive idea of protecting users’ queries was simple at
the beginning. A straightforward scheme is naive query injection,
which randomly samples fake queries from fake query sources
(e.g., other user’s queries, seed files, and HTML pages) and injects
the selected fake queries to real queries [1]. With the development
of data anonymization, k-anonymization has been widely used in
obfuscating queries. A release of queries is said to have the k-
anonymity property if any query in the release cannot be distin-
guished from at least k-1 other queries contained in the release
[2], [6], [9], [10], [37], [60], [61]. Furthermore, another popular
idea to protect query privacy is profile-based obfuscation [3], [5],
[8], [29]. It uses statistic techniques to monitor user profile, and
add fake queries to make it difficult to re-identify user’s real
profile. Note that the development of obfuscation technologies

are correlated. For example, PRAW [8] measures users’ profile,
injects k-1 fake queries, and samples fake queries from both static
and dynamic query sources.

With the aggravation of the game between query protection
and attack, researchers combine the advantages of obfuscation-
based solutions with proxy-based or cryptography-based solutions.
For example, PEAS [57] combines a new proxy protocol with a
new obfuscation method, and X-Search [59] and CYCLOSA [58]
send users’ queries (fake and real) to the search engine through a
proxy, and improve security by relying on Intel SGX. To advance
the development of obfuscation-based technologies, our OB-
WSPES provides a uniform evaluation system for obfuscation-
based web search privacy, which allows researchers to conduct
fair analysis and evaluation of existing or newly developed web
search privacy protection/attack techniques. On one hand, the
combination of different query protection techniques will reduce
the success possibility of re-identification attacks and distinguish
attacks. One the other hand, we believe that the progress of
NLP technologies will further promote the development of query
obfuscation technologies. We discuss the future works in Section
6.3.

6.2 Limitations

As a practical obfuscation based web search privacy evaluation
framework (OB-WSPES), we believe our work can be improved
in several perspectives.

Integrate More Obfuscation and Attack Schemes. In OB-
WSPES, we focus on five obfuscation techniques and evaluate
them against ten privacy attack methods. In practice, there might
exist additional obfuscation mechanisms and attack methods.
Though our research and findings are useful and effective, in order
to make the system more practical and useful for industry and
academic researches, it would be much better to integrate more
obfuscation and attack schemes.

Consider More Features. The features extracted by each
attack method may be different. For example, SimAttack ex-
tracts profile features and QWSP extracts textual characteristics,
behavioral characteristics, and temporal characteristics. In order
to compare the various attack algorithms fairly, in OB-WSPES,
the main features extracted are textual features. Although our
methods of feature extraction have reflected the quality of the
attack algorithms, it would be much better to extract more useful
information from users’ explicit and implicit data, e.g., the number
of clicks, temporal and regional characteristics. We believe that the
success rate of attacks would be improved if we use more features.

More Evaluation Metrics. In OB-WSPES, we evaluate ob-
fuscation tools and methods with respect to utilities and the ability
to resist attacks. Specifically, we have evaluated 6 query utility
metrics, 2 application utility metrics and defended against 10
WSP attacks. These metrics can reflect the basic properties of
these tools/methods. The evaluation would be more valuable if we
consider more evaluation metrics. For example, metrics for search
result ranking, the time to retrieve useful information, and the
impact on network throughput. Furthermore, if a comprehensive
evaluation index is given, it will be much easier for users to choose
proper obfuscation methods or tools.

6.3 Future Work

In order to better protect web search privacy, more future works
could be done in the following directions.
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Query Obfuscation. According to our analytically results in
Section 2 and evaluation results in Section 5, most obfuscation
techniques are vulnerable to modern WSP attacks. However, it
is very important to protect web search privacy. We consider
improving web search privacy in the following ways:

1) Semantic space based obfuscation mechanism. As we have
analysis that most existing schemes obfuscate queries based on the
statistical characteristics, and there is no scheme that obfuscates
user queries in semantic space. However, the attackers can easily
successful attack at semantic level. With the develop of NLP
techniques, it is possible to build a semantic based obfuscation
mechanism which maps user real queries to semantic space,
introduces calculated noise to queries and converts fake queries
from semantic space to natural-language spatial.

2) Combining obfuscation and unlinkability. Web search pri-
vacy faces at least two aspects attacks: identity attack and de-
anonymization attack. Limitations of web search privacy using
only obfuscation-based mechanisms, proxy-based mechanisms or
cryptography-based mechanisms have been pointed out. To achive
the unlinkability and the indistinguishability of search activities, it
is interesting to combine the advantages of the three machanisms
(e.g., [57], [58], [59]). Through careful design, combining obfus-
cation and unlinkability may get an universal powerful web search
privacy protection tool.

3) Specific scenario aware protection. A possible research
direction could be developing multiple-roles and specific scenario
based obfuscation techniques. This is because a user’s web search
is multifaceted, and different facets require different privacy in-
tensity. We could divide user’s queries into parts based on user’s
different facets, give each group of queries a new identity, and
obfuscate each group of queries. In this way, the user’s profile
could be decoupled and obfuscated. This may achieve better
obfuscation and meanwhile support some application utility, e.g.,
personalization of web search and recommender system.

Web Search Privacy Attack. Based on our WSP attacks
evaluation result, future WSP attack researches may be improved
in the following two directions.

1) Neural network based attacks. Neural network based tech-
niques can extract more semantic features and their connections.
The new NLP and tools to analyze and manipulate text become
mature and can provide room in the design of attacks to break the
obfuscation. For example, they might use deep neural networks
with various pre-trained user or word embedding to classify
collected queries. In addition, the neural network model can be
continuously updated according to the query data stream.

2) Combining fingerprinting and de-anonymization. In addi-
tion to queries, we can get rich information in the real world
such as location, URLs, time delay, virtual address and device-
specific information. Through the analysis of the rich information,
we can use fingerprinting technologies to identify the user’s real
identity and link each user with its queries, which is accurately
identified attacks. Browser fingerprinting has reached a state of
maturity where it is now used by many companies alongside
cookies to identify and track devices for a wide range of purposes
from targeted advertising to fraud prevention [65], [66], [68]. For
example, the behavior of communication traffic may reveal some
patterns (such as, packet size, packet direction, and inter-packet
time, etc.) that can expose users’ identities. If we successfully link
the senders to queries, although the users apply obfuscation tech-
nology to protect their queries, it is more easy for us to perform
de-anonymization attacks to distinguish users’ real intention and

interests.
Evaluation Platform. In this paper, we focus on implementing

and evaluating query obfuscation and web search privacy attack
techniques. It is also attractive to integrate the web search protec-
tion and attack techniques, e.g., proxy-based and cryptography-
based schemes. In the future, we will develop a uniform and
open-source evaluation system supporting multi-type web search
protection and attack schemes.

7 Conclusion
In this paper, we propose, implement and evaluate OB-WSPES,
a uniform evaluation system for obfuscation based web search
privacy. Within OB-WSPES, we systematically analyze, imple-
ment, and evaluate five query obfuscation algorithms, two feature
vectorization methods, eight query utility metrics, and ten modern
WSP attacks. To the best of our knowledge, OB-WSPES is the
first such system that provides a practical platform enabling the
user to obfuscate queries and evaluate the security of their data. In
addition, it allows researchers to conduct fair studies of existing
or newly developed obfuscation/WSP attack techniques.

Leveraging OB-WSPES, we conduct extensive experiments.
The result demonstrates that (i) adding more fake queries to
users’ real data does not yield better privacy. In front of powerful
attack methods, more dummy queries result in higher success
attack rate; (ii) the query utility preserved by obfuscated queries
declines with the increasing amount of dummy queries, while
the application utility does not; and (iii) all the state-of-the-art
obfuscation schemes are vulnerable to several or all of the modern
web search privacy attacks. The degree of vulnerability depends on
several factors, e.g., the content and the size of the thesaurus, the
obfuscation algorithm, the strategy of sending obfuscated queries
and the ratio of dummy queries to real queries. Finally, based on
our findings and analysis, we discuss the future research directions
of query obfuscation and web search privacy attack.
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Appendix
.1 Features extracted by privious works

TABLE 9: Features extracted from the query events by Gervas et
al. [27].

Feature Description

TFQuery Frequency of terms in the query
TFLandingPage Frequency of terms in landin pages
NumQueryTerms Number of terms in the query
NumQueryChar Number of characters in the query
TFQueryAdult Frequency of adult terms in the query
TFlandingPageAdult Frequency of adult terms in the landing pages
NumSpellingErrors Number of misspelled terms
TopicODP Set of ODP categories of the top 8 result pages
CityQuery Cities mentioned in the query
CountriesQuery Countries mentioned in the query
TFURL Keywords in URLs of the top 8 result pages
QueryTermPopularity Frequency of the query terms in AOL dataset

.2 Evaluation of the obfuscation mechanisms in PEAS, X-
Search and CYCLOSA

In this subsection, we evaluate the obfuscation mechanisms PEAS,
X-Search and CYCLOSA. Note that PEAS [57], X-Search [59]
and CYCLOSA [58] are proxy-based techniques combined with
obfuscation methods. Therefore, in this paper, we focus on
evaluating the obfuscation mechanisms in PEAS, X-Search
and CYCLOSA, and the evaluation methodology is the same as
in Section 5.

.2.1 Utility Evaluation
We present the average utility results in Table 11. First, we
can observe that the query utility declines with the increasing

TABLE 10: Relative importance of the features in linkage function
ImportanceUS R and ImportanceT MN defined by Gervas et al. [27],
where ImportanceUS R is the feature importance of the linkage
function learned for an attack against an obfuscation mechanism
using queries from another user, and ImportanceT MN is the im-
portance of the linkage function learned for the attack against an
obfuscation using autogenerated queries (TMN).

Feature relation ImportanceUS R ImportanceT MN

Difference in query term weights 100 24
Difference of timestamps 56 100
Levenshtein distance of queries 32 20
Average ODP tree distance 31 7
Queries adult terms bool difference 26 15
JaccardC of query adult terms 20 16
Both queries have adult terms 19 17
Difference of clicked landing pages 18 5
Difference of query terms len 14 8
JaccardC of top 8 landing page URLs 12 22
Difference of query characters len 10 13
Difference of spelling errors 7 4
Both queries have spelling error 6 1
Same ODP level 2 category 4 no
Queries spelling error bool difference 4 no
JaccardC of landing page adult terms 4 4
JaccardC of the query terms no 11

amount of dummy queries. For example, in Figure 10, ODP3D in
PEAS changes from 0.9555 (k=1) to 0.8946 (k=8), and ODP2 in
CYCLOSA changes from 0.9788 (k=1) to 0.9469 (k=8). Second,
adding more dummy queries to users’ real data does not yield
more changes on the web search result. The PWS E increases
with k in PEAS. However, in CYCLOSA, the performances is
almost identical for k=1 (PWS E= 8.2727) and k = 4 (PWS E
= 8.2609). The obfuscation mechanism in X-Search performs
better than PEAS and CYCLOSA in preserving utility. This is
because X-Search randomly aggregates the original query with
k fake queries with logical OR operators. These fake queries
come from users’ past queries maintained by X-Search, which
are similar to real queries in both the structure and the semantic
space. For example, the ODP2D results in X-Search are similar for
different k, and the average profile similarity in X-Search (0.9660,
k=1) is higher than PEAS (0.8166, k=1) and CYCLOSA (0.8892,
k=1). The utility results of PEAS, X-Search and CYCLOSA further
confirm our findings in Section 5.3.

.2.2 Obfuscation vs Attack
We present the average accuracy results of attacks against PEAS,
X-Search, and CYCLOSA in Table 12. The results are consistent
with our findings in Section 5.5. First, in Table 12, the classifi-
cation based attacks are more effective than the clustering based
and the linkage based methods. For example, RD (0.9124) > K-
means (0.8580) > SimAttack (0.1008) with k=9 in PEAS. Second,
the performance of SimAttack against PEAS, X-Search and CY-
CLOSA is similar to the results in Section 5.5. Third, in Figure
10, we can observe that the attack accuracy results of PEAS,
X-Search and CYCLOSA increase with the ratio k (k=dummy
queries/real queries). These results again demonstrate that adding
more fake queries to users’ real data does not yield better privacy.
Finally, compared with X-Search and CYCLOSA, PEAS is more
vulnerable. This is because the fake queries generated by the co-
occurrence matrix of PEAS have a gap with natural language and
easier to be distinguished in the semantic space. Thus, in Figure
11, PEAS is the most vulnerable method.
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TABLE 11: Obfuscation vs Utility. Average utility metrics of obfuscated data vs original queries in PEAS, X-Search and CYCLOSA.
k is the ratio of dummy queries to real queries.

k NQC QE ODP2E ODP2D ODP3E ODP3D PWS J PWS E UP

CYCLOSA 1 0.9994 1.0070 1.0457 0.9788 1.1013 0.9555 0.4593 8.2727 0.8892
CYCLOSA 4 0.9967 1.0156 1.0568 0.9598 1.1363 0.9158 0.4222 7.7143 0.8896
CYCLOSA 8 0.9914 1.0229 1.0566 0.9469 1.1538 0.8946 0.4593 8.2609 0.8884

PEAS 1 0.9995 1.0054 1.0539 0.9698 1.1020 0.9452 0.5083 7.6000 0.8166
PEAS 4 0.9936 1.0163 1.0565 0.9426 1.1144 0.8745 0.4593 8.6800 0.8176
PEAS 8 0.9811 1.0239 1.0393 0.9248 1.0958 0.8440 0.4083 9.4211 0.8179

X-Search 1 0.9992 1.0062 1.0031 0.9974 1.0150 0.9925 0.5222 7.9600 0.9660
X-Search 4 0.9901 1.0173 1.0064 0.9972 1.0226 0.9924 0.5222 7.6471 0.9673
X-Search 8 0.9714 1.0238 1.0094 0.9979 1.0256 0.9941 0.5593 7.4737 0.9677
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Fig. 9: The average ODP utility metrics of PEAS, X-Search and CYCLOSA with different k. k=dummy queries/real queries.
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Fig. 10: The average accuracy of different attacks aganist PEAS, X-Search and CYCLOSA with the change of k. k=dummy queries/real
queries.
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Fig. 11: CDF of vulnerability for obfuscation mechanisms in PEAS, X-Search and CYCLOSA with k=1, 3, 7. k=dummy queries/real
queries.
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TABLE 12: Obfucation vs Attack. The average accuracy of attacks against PEAS, X-Search and CYCLOSA.. k=dummy queries/real
queries.

OB-PWS k RD SVM NB GBDT LR NC DTC MLP K-means SimAttack
CYCLOSA 1 0.6152 0.6137 0.6205 0.6319 0.6348 0.6371 0.6315 0.6370 0.6221 0.4536
CYCLOSA 3 0.7206 0.7077 0.6999 0.7120 0.7128 0.7132 0.7090 0.7143 0.6901 0.2971
CYCLOSA 5 0.7826 0.7744 0.7532 0.7660 0.7660 0.7628 0.7603 0.7656 0.7362 0.2280
CYCLOSA 7 0.8242 0.8173 0.7890 0.8011 0.8012 0.7948 0.7934 0.7987 0.7674 0.1844
CYCLOSA 9 0.8512 0.8458 0.8112 0.8239 0.8250 0.8169 0.8165 0.8219 0.7872 0.1577

PEAS 1 0.6943 0.6862 0.6901 0.7105 0.7260 0.7238 0.7173 0.7290 0.7029 0.4507
PEAS 3 0.8032 0.7862 0.7862 0.7995 0.8114 0.8088 0.8052 0.8139 0.7777 0.2314
PEAS 5 0.8594 0.8510 0.8401 0.8506 0.8602 0.8544 0.8528 0.8601 0.8212 0.1590
PEAS 7 0.8930 0.8874 0.8712 0.8805 0.8888 0.8808 0.8804 0.8867 0.8418 0.1220
PEAS 9 0.9124 0.9080 0.8878 0.8968 0.9047 0.8951 0.8958 0.9018 0.8580 0.1008

X-Search 1 0.5094 0.5119 0.5119 0.5128 0.5110 0.5119 0.5115 0.5108 0.5093 0.5052
X-Search 3 0.6172 0.6830 0.6379 0.6347 0.6340 0.6176 0.6209 0.6210 0.6086 0.2918
X-Search 5 0.7246 0.7788 0.7098 0.7160 0.7178 0.6883 0.6956 0.6988 0.6809 0.2266
X-Search 7 0.7868 0.8309 0.7498 0.7611 0.7646 0.7280 0.7377 0.7432 0.7178 0.1937
X-Search 9 0.8271 0.8635 0.7753 0.7899 0.7940 0.7530 0.7643 0.7715 0.7417 0.1729
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